1 / Dispositif de flexion

Le dispositif de flexion consiste en cinq parties :

- Patin de serrage (1)
- Échantillon (2)
- Deux curseurs (3) à rouleaux
- Section en I (4) avec boulon

2 / Préparation de l'essai

DEPOSER la poutre d'essai (7) avec une distance entre appuis de 300mm et baisser le poinçon de compression (6) à l'aide de la roue à main jusqu'à ce qu'il touche légèrement la poutre d'essai sur toute sa largeur.

METTRE à zéro l'aiguille entraînée de l'affichage de la force.

VERIFIER le serrage du comparateur à cadran (lié au capteur de déplacement pour l'unité d'acquisition de données) contre la contreplaque avec une distance de mesure (course) d'environ 8...10 mm.

3 / Utilisation de l'unité d'acquisition de données

📰 WP 300.20 Test de flexion								
Démarrer	Fichier	Edition Affichage Langue ?						
	Ouvr	ir fichier						
	Nouvelle série de mesures							
	Enregistrer la série de mesures							
(1) F	Effacer la série de mesures							
	Enre Effac	gistrer toutes les séries de mesures cer toutes les séries de mesures						
	Impri Impri impri	imer le graphique imer le tableau mer la fenêtre						

)émarrer	Fichier	Edition	Affichage	Langue ?
			Diagramme force-flèche	
			tableau	
(1) F			rapport de test	
(2) F		-	Réglages	

LANCER le logiciel pour l'acquisition de données.

LANCER le module pour l'acquisition de données de l'essai de flexion via le menu « Démarrer ».

Démarrer → Test de flexion

CREER un nouveau projet pour un nouvel essai par le menu « Fichier ».

Fichier → Nouvelle série de mesures

ENTRER une désignation pour l'essai dans le champ « **nom** » dans la fenêtre de dialogue qui s'ouvre ensuite.

De plus, il est possible d'ajouter un commentaire, par exemple pour noter des caractéristiques spéciales de cet essai.

Par le biais du menu

« Affichage → Réglages », OUVRIR une fenêtre de dialogue dans laquelle on précise des informations concernant la poutre d'essai et le rythme d'acquisition de données.

Dans le champ **matériel**, **CHOISIR** le matériau de la poutre d'essai (on peut aussi entrer un matériau manquant dans l'entrée **Définir** du menu déroulant).

COMPLETER les différents champs :

- Limite apparente d'élasticité Sigma

 σ_{max} = ... N/mm

- Distance entre supports L = ... mm
- Largeur de spécimen B = ... mm
- Hauteur de l'éprouvette H = ... mm
- Temps de balayage Ta = 1s

La limite **apparente d'élasticité Sigma** (σ_{max}) correspond sensiblement à Re.

La valeur du champ **Force max. test** définit la force maximale admissible en kN. Elle est déterminée automatiquement et représentée comme barre rouge dans le diagramme force-flèche.

NE PAS DEPASSER cette barre pendant l'essai. EXEMPLE : 0,416 kN pour le bois

La préparation du projet est finie, il faut calibrer les valeurs des capteurs.

Pré-CONTRAINDRE l'échantillon légèrement (max 0,1 kN) pour diminuer l'influence des jeux.

METTRE tous les affichages du logiciel à ZÉRO avec le bouton TARE.

4 / Réalisation de l'essai

<u>Attention</u> : Ne pas dépasser la barre rouge dans le diagramme (charge admissible Fmax) sinon la poutre d'essai est déformée de manière permanente.

LANCER l'acquisition de données

SOLLICITER la poutre lentement et constamment en tournant la roue à main jusqu'à la barre rouge.

TERMINER l'acquisition de données. **SAUVEGARDER** éventuellement la série de données pour une utilisation ultérieure.

LIRE la flèche " s" et la noter.

Après enregistrement de toutes les valeurs mesurées, **RETOURNER** la roue à main jusqu'à la butée et **REPOUSSER** le bâti d'essai en bas.